martes, 8 de junio de 2010

Propiedades de los Liquidos

Propiedades de los líquidos

OBJETIVOS:
Determinar la viscosidad de 3 líquidos puros a tres diferentes temperaturas, utilizando el viscosímetro de Ostwald.
Determinar la tensión superficial de tres líquidos puros mediante el método de ascensión capilar.
Determinar el porcentaje de error, entre el valor experimental y el reportado de la literatura.

INTRODUCCIÓN TEÓRICA.
Un liquido está formado por moléculas que están en movimiento constante y desordenado, y cada una de ellas chocan miles de millones de veces en un lapso muy pequeño. Pero, las intensas fuerzas de atracción entre cada molécula, o enlaces de hidrogeno llamados dipolo-dipolo, eluden el movimiento libre, además de producir una cercanía menor que en la que existe en un gas entre sus moléculas. Además de esto, los líquidos presentan características que los colocan entre el estado gaseoso completamente caótico y desordenado, y por otra parte al estado sólido de un liquido (congelado) se le llama ordenado. Por lo tanto podemos mencionar los tres estados del agua (liquido universal), sólido, gaseoso y liquido.

COMPRESIÓN Y EXPANSIÓN
A los líquidos se les considera incomprensibles debido que dentro de ellos existen fuerzas extremas que entre sus moléculas las cuales se atraen, por otra parte cuando a un liquido se le aplica una presión su volumen no se ve afectado en gran cantidad, ya que sus moléculas tienen poco espacio entre si; por otra parte si aplicamos un cambio de temperatura a un líquido su volumen no sufrirá cambios considerables. Cabe señalar que cuando las moléculas de un líquido están en continuo aumento de movimiento es por causa del aumento de alguna temperatura que esté experimentando el mismo lo cual inclina al liquido a aumentar la distancia de sus moléculas, a pesar de esto las fuerzas de atracción que existen en el líquido se oponen a ese distanciamiento de sus moléculas.

DIFUSIÓN
Al realizar la mezcla de dos líquidos, las moléculas de uno de ellos se difunde en todas las moléculas del otro líquido a mucho menor velocidad, cosa que en los gases no sucede. Sí deseamos ver la difusión de dos líquidos, se puede observar dejando caer una pequeña cantidad de tinta ( china) en un poco de agua. Debido a que las moléculas en ambos líquidos están muy cerca, cada molécula conlleva una inmensidad de choques antes de alejarse, puede decirse que millones de choques. La distancia promedio que se genera en los choques se le llama trayectoria libre media y, en los gases es mas grande que en los líquidos, cabe señalar que esto sucede cuando las moléculas están bastantemente separadas. A pesar de lo que se menciona anteriormente hay constantes interrupciones en sus trayectorias moleculares, por lo que los líquidos se difunden mucho más lentamente que los gases.


FORMA Y VOLUMEN
En un liquido, las fuerzas de atracción son suficientemente agudas para limitar a las moléculas en su movimiento dentro de un volumen definido, a pesar de esto las moléculas no pueden guardar un estado fijo, es decir que las moléculas del líquido no permanecen en una sola posición. De tal forma que las moléculas, dentro de los limites del volumen del liquido, tienen la libertad de moverse unas alrededor de otras, a causa de esto, permiten que fluyan los líquidos. Aún cuando, los líquidos poseen un volumen definido, pero, debido a su capacidad para fluir, su forma depende del contorno del recipiente que los contiene.

VISCOSIDAD
Algunos líquidos, literalmente fluyen lentamente, mientras que otros fluyen con facilidad, la resistencia a fluir se conoce con el nombre de viscosidad. Si existe una mayor viscosidad, el liquido fluye mas lentamente. Los líquidos como la maleza y el aceite de los motores son relativamente viscosos; el agua y los líquidos orgánicos como el tetracloruro de carbono no lo son. La viscosidad puede medirse tomando en cuenta el tiempoque transcurre cuando cierta cantidad de un liquido fluye a través de un delgado tubo, bajo la fuerza de la gravedad. En otro método, se utilizan esferas de acero que caen a través de un liquido y se mide la velocidad de caída. Las esferas mas lentamente en los líquidos mas viscosos. Si deseamos determinar las viscosidad con respecto al tiempo, es decir el volumen del líquido que fluye con respecto al tiempo tenemos:
........................ecuación 1
Donde:
= Velocidad de flujo del liquido a lo largo de un tubo .
r = Radio del tubo.
L = Longitud
(P1 - P2) = Diferencia de presión
A pesar de esto la determinación de las variables L y r es complicado, para esto empleamos un método de comparación entre un liquido de viscosidad desconocida y el agua como un liquido base, pero si consideramos que D P es en proporción a la densidad r tenemos el siguiente análisis.
.........................ecuación 2
Donde:
m 1= Viscosidad del liquido desconocido.
m Viscosidad del agua.

TENSIÓN SUPERFICIAL
En un liquido, cada molécula se desplaza siempre bajo influencia de sus moléculas vecinas. Una molécula cerca del centro del liquido, experimenta el efecto de que sus vecinas la atraen casi en la misma magnitud en todas direcciones. Sin embargo, una molécula en la superficie del liquido no esta completamente rodeado por otras y, como resultado, solo experimenta la atracción de aquellas moléculas que están por abajo y a los lados. Por lo tanto la tensión superficial actúa en un liquido perpendicular a cualquier línea de 1cm de longitud en la superficie del mismo. Para la tensión superficial tenemos lo siguiente:

Donde:
r = Radio del tubo capilar.
h = Altura medida desde el nivel del líquido en el tubo de ensaye, hasta el nivel del líquido en el tubo capilar.
g = Aceleración de la gravedad.
q = Angulo de contacto en el liquido con las paredes del tubo capilar.
g = Tensión superficial.
Para los líquidos que mojan el vidrio, su ángulo de contacto se supone a 0°, y sacando el (cos 0°) es 1, por lo que la ecuación anterior se reduce a:

Donde:
D r = Es la diferencia de densidades que existe en el líquido y su vapor.

Hidrostática
La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de equilibrio, es decir, sin que existan fuerzas que alteren su movimiento o posición. Los principales teoremas que respaldan el estudio de la hidrostática son el principio de Pascal y el principio de Arquímedes.

PRESIÓN HIDROSTÁTICA
Hemos estudiado la presión atmosférica, es decir, la presión que ejerce el aire sobre los cuerpos que están en su interior, ayudándonos de una animación para entender el concepto y calcular su valor a nivel de la superficie terrestre. Ahora vamos a estudiar como es la presión en el interior de un líquido (agua) siguiendo los mismos pasos realizados en el estudio de la presión atmosférica, y haremos una generalización para todo tipo de fluido.


Supongamos que te sumerges en el agua del mar, la presión que actúa sobre ti dependerá del peso de la columna de agua que tengas encima, sobre la superficie de tu cuerpo. Si te sumerges hasta 1 tendrás menos presión que en 2 y a su vez que en 3.







Ahora cogemos ese mismo prisma pero en el interior del mar y aplicamos el concepto de presión



Y hacemos sencillas transformaciones a partir del concepto de densidad , despejamos la masa y sustituimos en la ecuación de la presión

y si tenemos en cuenta que el volumen del prisma de agua es

y lo sustituimos en la ecuación de la presión, nos queda


Es decir la presión ejercida por el agua en un punto situado a una profundidad h de la superficie es igual al producto de la densidad d del agua, por la profundidad h y por la aceleración de la gravedad.

En general para un fluido


Si consideramos que la densidad del fluido permanece constante, la presión, del fluido dependería únicamente de la profundidad. Lo que ocurre que nos podemos encontrar un fluido como el aire o el agua del mar, que sus densidades no son constantes y tendríamos que calcular la presión en su interior de otra manera.

Haz como ejercicio el cálculo de la presión en el fondo de la fosa de las Marianas (11033 m de profundidad) y de densidad del agua del mar (supuesta constante) es de 1027 kg/m3 (de 35o/oo de salinidad). A la hora de sustituir los datos numéricos hay que tener cuidado que todos ellos estén expresados en un unidades

Principio de Pascal
En física, el principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662) que se resume en la frase: «el incremento de la presión aplicada a una superficie de un fluido incompresible, contenido en un recipiente indeformable, se transmite con el mismo valor a cada una de las partes del mismo». Es decir, que si se aplica presión a un líquido no comprimible en un recipiente cerrado, ésta se transmite con igual intensidad en todas direcciones y sentidos. Este tipo de fenómeno se puede apreciar, por ejemplo en la prensa hidráulica la cual funciona aplicando este principio.

Principio de Arquímedes
El principio de Arquímedes establece que cualquier cuerpo sólido que se encuentre sumergido total o parcialmente (depositado) en un fluido será empujado en dirección ascendente por una fuerza igual al peso del volumen del liquido desplazado por el cuerpo sólido.
El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido sólo parcialmente.


BIBLIOGRAFIA:

http://www.monografias.com/trabajos16/propiedades-liquidos/propiedades-liquidos.shtml

http://es.wikipedia.org/wiki/Hidrost%C3%A1tica

http://perso.gratisweb.com/grupopascal/FLUIDOS%20Profe/FLUIDOS%20Profe/Carpeta%20unidad/Phidrostatica/index.htm

No hay comentarios:

Publicar un comentario